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Abstract

Generative AI (GenAI) presents challenges in attributing
synthesized content to its original training data, particu-
larly for artists whose styles are replicated by these models.
We introduce CustomMark, a novel technique for customiz-
ing pre-trained text-to-image GenAI models to enable attri-
bution. With CustomMark, text prompts can be modified to
embed a watermark in generated images, linking them to
training concepts such as an artist’s style, specific objects,
or the GenAI model itself. Our approach supports sequen-
tial customization, allowing new concepts to be attributed
efficiently and scalably without retraining from scratch. We
demonstrate that CustomMark can robustly watermark hun-
dreds of individual concepts and support multiple attribu-
tions within a single image while preserving the high visual
quality of the generation.

1. Introduction

Given GenAI’s potential to democratize creativity, ethical
concerns have emerged among artists regarding the unau-
thorized use of their works. Many seek recognition or com-
pensation for the derivative use of their styles in generated
images [44]. In the past, such creative recognition has relied
on collaborations between technology, legal frameworks,
and artistic practices [9]. GenAI currently lacks such mech-
anisms, leading to artist discontent and prompting adversar-
ial strategies like “Glaze” [51], “Anti-DreamBooth” [60],
and others [21, 24, 80] to protect their works.

To address this discontent, it is needed that GenAI mod-
els provide attribution when generated images are derived
from artists’ works in training data. Such attribution could
potentially unlock new revenue streams in the creator econ-
omy, rewarding creative opt-in to GenAI training [15]. A
decentralized framework to compensate creators based on
visual similarities between generated and training images
was proposed in [8]. Several similarity embeddings have
been explored [8, 48, 64] to determine the subset of training
images that influenced the generation. While intuitive, these
visual correlation-based attribution methods [8, 48, 64] of-

Figure 1. Overview of concept attribution by GenAI models.
(a) A user generates images of various artists’ styles using artists’
tokens in the prompt (w/o attribution). (b) Artists request to the
companies to provide attribution for their work. Using Custom-
Mark, companies customize their models to enable attribution only
for the artists who have requested the same. (c) A user generates
the images using the improved GenAI model with an artist’s spe-
cific watermark for attribution to the artists.

ten fail to provide definitive explanations and can also in-
correctly attribute works not present in the training set.

Alternative approaches attempt to establish direct causal
relationships using techniques like proactive watermark-
ing [6] or influence estimation via data removal [65]. How-
ever, these methods require modifications to training data or
inference paradigms, making them computationally heavy.

In response, we propose CustomMark, an efficient tech-
nique for attribution in pre-trained GenAI models. Simi-
lar to [6], we use concept-specific watermarking but with-
out requiring predefined concepts before training. Custom-
Mark enables selective attribution of specific concepts in a
pre-trained model, supporting sequential learning for newly
emerging seen or unseen concepts. This approach avoids
exhaustive retraining and allows attribution only for rele-
vant concepts.



As shown in Fig. 1, we focus on attribution in text-to-
image Latent Diffusion Models (LDMs), where attributable
concepts appear in prompts, such as “A painting in the style
of V*” or “An image of V*.” If the owner of concept V* re-
quests attribution, CustomMark embeds a concept-specific
watermark into generated images while preserving visual
quality. Unlike [6], which attributes to a subset of training
images, CustomMark directly attributes the concept itself.
The watermark remains robust against non-editorial modi-
fications, ensuring traceability to the original concept and
the GenAI model as the image circulates online. Since Cus-
tomMark embeds watermarks in a concept-specific manner
without requiring exhaustive retraining, it effectively func-
tions as a form of model customization.

Current customization methods [19, 22, 28, 32, 36, 47,
52, 69, 72, 75] struggle to scale across many distinct
concepts, often compromising generation quality. To ad-
dress this, we propose a novel architecture that customizes
pretrained LDMs for large-scale watermarking. Building
on [21], we use a concept encoder to map a bit-secret to
token-embedding perturbations, but find it insufficient for
scalability. Thus, we introduce a mapper network that per-
turbs input Gaussian noise, we fine-tune the LDM’s atten-
tion layers, and leverage CSD [54] loss for faster training
and improved image quality. CustomMark enables fine-
tuned LDMs to generate watermarked images aligned with
text prompts while embedding corresponding watermarks.
Its sequential learning capability allows new attributions
with just 10% additional finetuning, preserving visual qual-
ity while protecting artist styles. Our contributions are:
1. An efficient, scalable technique to customize LDMs

for imperceptibly watermarking single or multiple
seen/unseen concepts in a generated image, enabling
robust concept attribution in pre-trained text-to-image
LDMs.

2. Sequential attribution capability, allowing fine-tuning
for new concepts dynamically without retraining the
model, ensuring selective attribution of relevant seen and
unseen concepts.

3. Demonstration that diffusion models can attribute 100s
of artists’ styles and 1000 ImageNet classes while main-
taining high visual quality of watermarked concepts.

2. Related Works

Proactive Schemes. Proactive methods enhance vari-
ous tasks by embedding signals or perturbations into input
images, providing benefits to deepfake tagging [63], de-
tection of manipulated content [2], localization of manip-
ulations [4], object detection [3, 21], and concept attribu-
tion [6]. Some approaches focus on altering the training
data to disrupt the output of generative models [46, 70].
Meanwhile, Alexandre et al. [49] introduce a fixed signal

method to enable attribution of training datasets. Recently,
a survey by Asnani et al. [7] discuss various proactive ap-
proaches, encryption schemes, learning process, and their
applications, such as vision model defense [58, 67], LLM
defense [37, 66, 77], privacy protection [43, 57, 68, 81],
improving GenAI models [30, 33, 35, 38, 53, 74], 3D do-
main [26, 27, 29, 59, 71, 76], etc. In CustomMark, we use
proactive techniques to do concept attribution in an efficient
and scalable manner, with a focus on practical application
to real-world scenarios.

IP Protection and Concept Attribution. For IP pro-
tection of AI-generated models and content, watermark-
ing techniques embed signals into outputs via model fine-
tuning [23], prompt verification [34, 79], and token-level
adjustments [31]. Copyright-focused tools like Diffusion-
Shield [16] and detection watermarking [39] prevent mis-
use, while latent fingerprinting [5] and audio watermark-
ing [12] extend protection across media. Additional model
security is provided by DeepSigns [17], DeepMarks [14],
and network embedding [62], as well as deep spatial en-
cryption [73], backdoor triggers [1], and dynamic defenses
like DAWN [55].

Concept attribution identifies which training data influ-
enced a generated output, distinct from model [11] or cam-
era attribution [13]. Traditional methods passively assess
visual similarities between generated and training images
using predefined criteria. For instance, Wang et al. [64]
propose Attribution by Customization (AbC), modifying
embeddings like CLIP and DINO with customized diffu-
sion models. Style-specific attribution methods such as AL-
ADIN [48] and EKILA [8] employ perceptual hashing for
patch-based matching. MONTRAGE [10] monitors weight
updates to attribute pre-trained concepts, while Asnani et
al. [6] embed concept-specific watermarks in training im-
ages for direct attribution. In contrast, we introduce a proac-
tive watermarking technique that requires no training data
modifications and enables selective, sequential attribution
after training.

GenAI Customization. Advances in GenAI customiza-
tion leverage techniques like Video Motion Customiza-
tion [28], Custom Diffusion [32], and CustomNet [72] to
adapt models to specific concepts and motions, while ap-
proaches like Modular Customization [41] and CIDM [20]
enhance scalability and prevent catastrophic forgetting.
Efficiency-focused methods [19] and LoRA-Composer [69]
optimize customization with minimal parameter adjust-
ments, while AquaLoRA [22] provides watermarking for
unauthorized use protection, and textual inversion [36, 47,
75] enables precise text-based editing. Privacy-oriented
anti-customization [61] offers additional security by adapt-
ing adversarial strategies. We propose a proactive concept
attribution technique using model customization, which
hasn’t been explored before.



Figure 2. Overview of CustomMark. Illustrating the training workflow for CustomMark. A concept token pci
is encoded through the

Concept Encoder EC to generate a modified prompt p̂ci
with embedded watermark information. The Secret Mapper MC maps a bit secret

si to perturb the concept token, producing δ, which is added to the Gaussian noise ϵ. The LDM using the prompt tokens and perturbed
Gaussian noise, producing watermarked images X̂ that carry the bit secret in visual form. During inference, the Secret Decoder DC

extracts the bit secret from watermarked image X̂ and the clean image X to extract the bit secret. CustomMark is guided by various
constraints, namely regularization loss JReg to make the artist token embedding similar, style loss JSty to maintain style consistency
between clean and watermarked images, and the bit secret loss JBCE to predict the added bit secret. Best viewed in color.

.

3. Method
3.1. Background

Prompts and Cross-Attention Mechanism in Diffusion
Model. In text-to-image LDMs [45], prompts and cross-
attention mechanisms work together to guide image genera-
tion. A prompt is processed by a text encoder and converted
into a text embedding. This embedding conditions the sam-
pling process by capturing the prompt’s meaning. Instead
of merely producing random images, the cross-attention
mechanism allows the model to “attend” to specific parts of
the text embedding, guiding the diffusion process to align
the output with the input prompt. For key K, query Q and
value V , the scaled dot-product attention is given by:

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V . (1)

Further, multi-head cross attention with respective weight
matrices W ∗

i s is utilized to improve generation quality by
processing the prompt with multiple attention heads:

MultiHead(Q,K,V ) = Concat(H1, . . . ,Hh)W , (2)

Hi = Attention(QWQ
i ,KWK

i ,V W V
i ). (3)

As the multi-head cross-attention in Eq. (3) is the main
component to establish a relationship between prompts and
the generated image, in CustomMark, we only fine-tune

W ∗
i s. This significantly reduces training time while en-

hancing critical associations between the concept and its
watermarked image.

Concept Attribution. ProMark [6] defines the concept
attribution as finding the closest concept in the training
dataset for a given generated image. For this purpose, Pro-
Mark divides the entire dataset into different concepts and
trains with each concept being watermarked. However, this
is impractical for the real world, as it is difficult to retrain
the GenAI models on the entire watermarked data. There-
fore, we redefine the problem of Concept Attribution as fol-
lows.

Let C represent a set of N distinct concepts within the
training dataset of a GenAI model. Out of the N con-
cepts, let Ĉ = {c1, c2, . . . , cM} be the M concepts that
need attribution, whose token embeddings are represented
as P c = {pc1 ,pc2 , . . . ,pcM }. Given a synthetic image
X generated by a GenAI model using pci ∈ P c, along
with other prompt token embeddings, forming an input
prompt P = {p1,p2, . . . ,pci , . . . ,pn}, the objective of
concept attribution is to map X to its corresponding con-
cept ci. Specifically, we find a mapping function f such
that ci = f(X).

3.2. CustomMark

Overview. To add attribution capabilities to a pre-trained
LDM, CustomMark perturbs the inputs to the LDM and
fine-tunes its attention weights. The input token embed-



ding pci and the input Gaussian noise ϵ are perturbed by
the concept encoder EC and the secret mapper MC net-
works, which encode a concept-specific bit-secret into the
respective inputs. This results in the perturbed embedding
p̂ci and the perturbed Gaussian noise ϵ̂, which are fed into
the LDM to sample new images. The synthesized images
are then fed to the secret decoder DC that outputs the cor-
responding bit-secret. During training, only the attention
weights in Eq. (2), and Eq. (3) of the LDM are fine-tuned.
The framework is guided by several constraints that allow
for the generation of images with embedded secrets and also
maintain the original artistic style. We will now present our
method in detail.
Embedding Encryption. In CustomMark we perturb all
the concepts in P c using a single concept encoder EC . For
ith concept, the concept token embedding pci is encrypted
using EC as:

p̂ci = EC(pci , si), (4)

where si is the concept specific bit-secret of length l, i.e.
si = {bi1, bi2, ..., bil} where bij ∈ {0, 1}.

After encryption, the original embedding is replaced
by the encrypted text embedding, resulting in encrypted
prompt token embeddings P̂ = {p1,p2, . . . , p̂ci , . . . ,pn}.
To obtain the watermarked image, P̂ is fed to the LDM in
place of the original token embeddings P . Following the ar-
chitecture of [21], we apply a regularization mean squared
error (MSE) loss between P and P̂ at initial iterations, so
that the encoder EC has a good starting point to preserve the
style, and support secret learning. The regularization loss
is:

JReg = ||P̂ − P ||22. (5)

Secret Learning. We will now discuss the learning of
LDM to generate watermarked images given the encrypted
token embeddings P̂ . In addition to EC , we use a map-
per network MC to further accelerate the secret learn-
ing. Using ith bit-secret si, we estimate a perturbation
δ = MC(si) which is added to the initially sampled Gaus-
sian noise ϵ for image generation. Therefore, the perturbed
ϵ is given by:

ϵ̂ = ϵ+ α×MC(si), (6)

where α controls the magnitude of δ. The perturbed Gaus-
sian noise ϵ̂ along with P̂ is given as input to the LDM to
sample an image. Finally, to avoid the complexity of LDM
training, we only finetune the attention layers of the LDM
while fixing other layers.

During training, we create both clean and watermarked
images, X and X̂ , using the inputs (P , ϵ) and (P̂ , ϵ̂). The
style descriptors d and d̂ from images X and X̂ are ex-
tracted using the pretrained Contrastive Style Descriptors

(CSD) [54] model. CSD contains concise and effective style
information, while being invariant to semantic content and
capable of disentangling multiple styles. We maximize the
cosine similarity between two descriptors, which ensures
that the watermarked images match the style of the origi-
nal concept. To further support style matching, we apply an
MSE loss between the two images, in addition to the CSD
loss. Therefore, our style loss is given by:

JSty = 1− cos(d̂,d) + ||X − X̂||22. (7)

X and X̂ are further fed to a secret decoder DC , which
estimates the bit secret in given images. The decoder shall
output a zeros secret for X , and the secret si for X̂ . To train
DC , we use a binary cross-entropy (BCE) loss between the
ground truth bit-sequence si and the predicted one ŝi:

JBCE(si, ŝi) = −1

l

l∑
j=1

[bj log(b̂j)+(1−bj) log(1− b̂j)]. (8)

Therefore, CustomMark is trained in an end-to-end manner
to minimize the objective Lattr = LSty + LBCE + βLReg

during training, where β = 10 for our experiments.
During inference, if the random Gaussian noise and the

input prompt are perturbed, the diffusion model embeds a
watermark within the generated image. This watermark
can be decoded using DC to the concept-specific bit-secret,
functioning as hidden signatures for attribution.
Concept Attribution in Inference. To attribute the gener-
ated images, we extract the bit secret embedded by the LDM
using DC . Using this predicted bit-secret ŝ = DC(X̂) and
the bit-secret si corresponding to the concept ci, we define
the attribution mapping function f as:

f(X̂) = argmax
i∈[1,M ]

g(DC(X̂), si), (9)

where,

g(DC(X̂), si) = g(ŝ, si) =

l∑
k=1

[b̂k = bik], (10)

and [b̂k = bjk] is an indicator function that returns 1 if the
bits match, and 0 otherwise. Thus, using the predicted bit-
sequence, we assign the generated images to the concept
whose bit-sequence matches the best, i.e., the ith concept
that maximizes g(ŝ, si).

3.3. Sequential Learning
In real-world scenarios, the number of concepts requiring
attribution is not always fixed. The set of concepts can
change frequently, making it impractical to retrain the at-
tribution model from scratch each time new concepts are
introduced. To address this challenge, we propose the idea
of sequential learning with CustomMark.



Figure 3. Comparison with ProMark [6] on ImageNet. ProMark
produces low-quality images with bubble-like artifacts from its en-
cryption, whereas CustomMark enables LDMs to generate high-
quality images that closely match the original training concepts.

For example, if CustomMark is initially trained on M
concepts, denoted as Ĉ = {c1, c2, . . . , cM}, and a new con-
cept cM+1 needs to be attributed, the model can be fine-
tuned on the expanded set Ĉ∪cM+1, starting from the model
pretrained on Ĉ. This approach allows the model to adapt
to new concepts without requiring a predefined set during
initial training. Our experiments demonstrate that learning
new concepts in this manner requires only about 10% addi-
tional iterations, making it significantly more efficient than
retraining CustomMark from scratch.

3.4. Multi-Concept Learning
In real-world text-to-image generation, multiple concepts
are often combined within a single prompt, such as “a
painting of a dog in the style of Van Gogh.” To enable con-
cept attribution in such cases, CustomMark extends its at-
tribution mechanism to handle multiple concepts simulta-
neously.

Given two concepts, ci and cj , from the attributed set Ĉ,
their respective token embeddings pci and pcj are perturbed
using the concept encoder EC . This results in the perturbed
embeddings:

p̂ci = EC(pci , si), p̂cj = EC(pcj , sj). (11)

The perturbed prompt embeddings P̂ =
{p1, . . . , p̂ci , . . . , p̂cj , . . . ,pn} are then used in the
LDM to generate a watermarked image X̂ . During de-
coding, the secret decoder DC is designed to recover the
concatenated secret associated with both concepts:

ŝ = DC(X̂) = [si; sj ]. (12)

The concatenation ensures that both concept-specific se-
crets are extracted from the generated image, thereby en-
abling attribution for multiple concepts simultaneously. The

attribution function f is then applied independently for each
concept:

f(X̂) = argmax
i,j∈[1,M ]

g(DC(X̂), [si; sj ]). (13)

This approach ensures that CustomMark can reliably at-
tribute both concepts in a multi-concept image, allowing
for effective auditing of GenAI models even when multiple
stylistic or semantic elements are present in the generated
content.

4. Experiments

Implementation Details For training CustomMark, a pre-
defined list of prompts is used per concept (see supple-
ment). For concepts, we use 1, 000 ImageNet [18] classes,
23 WikiArt [56] artists, and a custom 200 list of artists (see
supplement). For text-to-image LDM, Stable Diffusion 1.5
is used. Unless stated, we use a bit-sequence of size 16.
We evaluate CustomMark using four metrics: bit accuracy,
attribution accuracy, CSD [54] score, and CLIP [64] score
as described. For attribution assessment, bit accuracy is the
maximum percentage of bits matched between the predicted
bit-secret and any of the concept-specific secrets, and at-
tribution accuracy is the percentage of times the predicted
bit-secret matches the correct concept-specific secret. For
quality assessment, the CSD score is the cosine similarity
between CSD descriptors, which assesses the style match
between two images, and the CLIP score is the cosine sim-
ilarity between CLIP image embeddings. For all evalua-
tions, we report average results on 100 generated and/or 100
clean images. For 10 concepts, CustomMark is trained for
20K iterations. All experiments are conducted on 8 A100
NVIDIA GPUs with a batch size of 8 per GPU.

4.1. Results

Comparison with Attribution Methods We evaluate var-
ious passive and proactive attribution methods on images
generated by LDMs trained on the ImageNet and WikiArt
datasets, which contain 1000 and 23 classes, respectively.
Here, each class is treated as a unique concept. For fair
comparison, we generate 100 images per class for both
ProMark [6] and CustomMark. Since ProMark and Cus-
tomMark embed different watermarks, their accuracy is re-
ported only on their respective 100 watermarked images.
Whereas for passive methods, including ALADIN [48],
CLIP [42], AbC [64], SSCD [40], and EKILA [8], that rely
on embeddings, the evaluation is done on images generated
by both proactive models i.e., an average over a total of 200
generated images per concept. As shown in Tab. 1, the pas-
sive methods exhibit relatively low attribution accuracy.

In contrast, the proactive methods, ProMark and Cus-
tomMark, significantly outperform the passive methods,



Attribution Accuracy (%) ↑
Method Type ImageNet Wikiart

ALADIN [48] Passive 5.55 18.58
CLIP [42] Passive 42.61 52.60
AbC [64] Passive 53.51 56.03

SSCD [40] Passive 25.50 45.34
EKILA [8] Passive 30.98 43.03

ProMark [6] Proactive 87.30 87.19

CustomMark Proactive 87.12 89.25

Table 1. Comparison with passive and proactive methods on im-
ages generated by a conditional model trained on ImageNet and
Wikiart dataset. CustomMark outperforms the passive methods on
both datasets significantly. Both proactive methods have similar
performance on ImageNet, but for Wikiart, CustomMark performs
better than ProMark.

Figure 4. Attribution results of three concept artists: VanGogh,
Monet, and Picasso, sampled from LDM before and after apply-
ing the attribution capability of customization-based method [21]
and CustomMark. [21] makes the LDM sample images far apart
from the original style of artists, while CustomMark-watermarked
images are much closer to the original style.

with much higher accuracy in both datasets. Although Pro-
Mark trains on an entirely watermarked dataset with all
LDM parameters learnable in training, its performance is
still comparable to CustomMark. Further, ProMark ad-
versely impacts image quality, as shown in Fig. 3, where
the generated ImageNet samples of ProMark are of lower
quality and display visible artifacts. To quantify the qual-
ity, we calculate the FID score [25, 50] between the original
ImageNet images (from a pretrained model without water-
marks) and the watermarked images from each proactive
model. The pretrained model achieves an FID score of
13.28. ProMark yields an FID score of 17.63, while Cus-
tomMark achieves an FID score of 14.73, indicating sub-
stantially better image quality. Thus, CustomMark not only
maintains robust attribution performance but also generates
higher-quality images than ProMark, making it a more ef-
fective solution for practical applications.

Comparison with Customization-Based Watermarking
Methods We compare our method with [21], which also
leverages textual token perturbations to guard personalized

Bit Attribution CLIP CSDMethod Acc. (%)↑ Acc. (%) ↑ Score ↑ Score ↑
Feng et al. [21] 90.87 74.14 0.57 0.51
CustomMark 99.29 94.29 0.81 0.77

Table 2. Comparison with customization-based method by Feng et
al. [21]. [KEYS: Acc.=Accuracy]

concepts. However, in [21], authors train a new concept
encoder-decoder pair for each personalization; an imprac-
tical solution in the real world. For a fair comparison,
we adapt [21] by training a single encoder-decoder pair
for 3 artists’ styles as concepts, namely VanGogh, Monet,
and Picasso. As shown in Tab. 2, CustomMark surpasses
this baseline in all metrics, achieving higher watermark de-
tection accuracy (99.29), attribution accuracy (94.29), and
generation quality (CSD score 0.81 and CLIP score 0.77).
These results demonstrate the effectiveness of CustomMark
for concept watermarking in GenAI.

Shown in Fig. 4 are some qualitative results for compar-
ison. Unlike [21], which struggles to preserve individual
artistic styles like brushstrokes and color palettes, Custom-
Mark accurately captures each artist’s unique nuances. For
example, for Picasso (second row, last col), [21] generates
Van Gogh-style brushstrokes.

Sequential Learning In Fig. 5, we showcase Custom-
Mark’s sequential learning capability, where the model be-
gins attribution with three concepts and subsequently inte-
grates additional concepts one at a time. This setup reflects
a dynamic, real-world setting where the need for concept
attribution evolves over time as new styles are added. In-
stead of retraining the model from scratch for each new
concept, CustomMark employs sequential learning to incre-
mentally learn attributions for new concepts without erasing
previously learned styles.

Starting with three initial concepts, CustomMark fine-
tunes the model as new concepts are introduced, updating
attribution while preserving distinct stylistic features. This
is evident in the similarity between clean and watermarked
images in each column, where CustomMark maintains high
fidelity to the original style. With sequential learning, it at-
tributes new concepts with only 10% additional iterations
per concept, avoiding full retraining. These results demon-
strate CustomMark’s scalability and efficiency in preserving
style-consistent, high-quality outputs for GenAI models.

Unseen Artists Watermarking We demonstrate Custom-
Mark’s ability to attribute both seen and unseen concepts
using textual inversion. As shown in Fig. 4, known con-
cepts are watermarked by perturbing their token embed-
dings. However, in real-world scenarios, generative models
often encounter novel concepts outside the initial training
set, requiring adaptability beyond predefined attributions.

To address this, we leverage textual inversion to derive
token embeddings for unseen concepts. Once obtained, we



Figure 5. Sequential learning of new concepts. CustomMark starts with three initial concepts and incrementally learns new attributions
without retraining from scratch. Each column displays clean and watermarked images, demonstrating CustomMark’s efficiency in adapting
to new styles with only about 10% extra training iterations per concept while maintaining high stylistic fidelity. We only show the concept
used to create the image. A list of all the prompts used is given in the supplement.

Figure 6. Attribution of Unseen Concepts with CustomMark.
Shown is the CustomMark’s ability to handle attribution for un-
seen concepts. The consistent style between clean and water-
marked images across new styles demonstrates CustomMark’s ro-
bustness in preserving artistic fidelity while achieving scalable at-
tribution. We only show the concept used to create the image. A
list of all the prompts used is given in the supplement.

apply watermark perturbations, enabling attribution without
significant model retraining. Fig. 6 illustrates this by show-
ing stylistic consistency between clean and watermarked
images, preserving unique attributes of each new style.
This demonstrates CustomMark’s adaptability, allowing it
to generalize to new styles while maintaining fidelity and
stylistic integrity.

Multi-Concept Watermarking For this scenario, we take
20 concepts into consideration (10 objects, and 10 artists).
Each concept is associated with an 8-bit secret. The decoder
extracts a 16-bit secret for the generated image. The qual-
itative results in Fig. 7 demonstrate that CustomMark suc-
cessfully embeds attribution signatures for both object (e.g.,
“dog,” “tree”) and style (e.g., “Van Gogh,” “Picasso”) con-
cepts within a single image while preserving visual quality.
Quantitatively, the attribution and bit accuracy evaluated on
100 clean and generated images are 89.14% and 95.47%.

4.2. Ablations
Unless stated otherwise, we use a model trained for 10 con-
cepts for all the ablation experiments (see supplement).

Nearby Concepts and Clean Images. CustomMark pro-
vides the flexibility to easily switch from the watermarked
image generation to a non-watermarked version, which we
define as clean image generation. To do this, we use the
non-perturbed original text tokens, while keeping the map-

Figure 7. Attribution for multiple Concepts present in a single
prompt with CustomMark.

Bit Attribution CLIP CSDMethod Acc. (%)↑ Acc. (%) ↑ Score ↑ Score ↑
CSD 98.6 88.15 0.65 0.73

CSD + L2 (latent) 99.12 90.94 0.70 0.67
CSD + L2 (image) 99.17 92.35 0.73 0.74

CSD + L2 + LDM atte. 99.29 94.29 0.81 0.77

Table 3. Ablation study for various style losses. [KEYS: Acc.
Accuracy, Att. Attribution, Atte.: Attention]

per network MC and the fine-tuned attention weights of
the model. An all-zero bit secret is used as an input to
MC and the secret decoder is expected to output the same
for these clean images. We evaluate CustomMark’s ability
to generate clean images for 1) attributable concepts: that
are fine-tuned with CustomMark and 2) nearby concepts:
that are related to attributable concepts but not exactly the
same. For example, if CustomMark can attribute paintings
of Van Gogh, then paintings from other artists are consid-
ered nearby concepts. For this evaluation, we use three at-
tributable artists (first three columns of Fig. 5) and seven
random nearby artists (see supplement).

For attributable concepts, the model achieves high bit ac-
curacy (96.13%) and attribution accuracy (85.45%) with an
all-zeros bit secret, indicating effective attribution of clean
concepts. For nearby concepts, it maintains strong bit ac-
curacy (92.36%) and attribution accuracy (81.90%), show-
casing the adaptability of CustomMark for practical appli-
cations, allowing selective watermarking for certain styles
while not watermarking concepts that don’t specifically re-
quest it. The generation quality with CustomMark is com-
parable to the pretrained LDM, with an FID score of 14.51



Figure 8. Ablation study for varying different parameters of CustomMark. We show the performance variation by varying the bit secret
length, the number of concepts, and the scaling factor.

Figure 9. Robustness evaluation of decoder by applying distortion
to generated images.

between original and clean images.

Style Loss. Tab. 3 presents an ablation study on differ-
ent style loss combinations and their impact on bit accu-
racy, attribution accuracy, and qualitative metrics. The base-
line using only CSD performs well, but adding L2 loss in
LDM’s latent space improves accuracy, with a slight drop
in the CSD score. Further applying L2 loss in image space
enhances overall performance, boosting attribution accu-
racy, CLIP, and CSD scores. The best results are achieved
by CustomMark, which combines CSD, L2 loss, and atten-
tion layer training, yielding the highest gains across all met-
rics and validating our design choice.

Robustness. Fig. 9 demonstrates CustomMark’s robust-
ness against various post-processing distortions, includ-
ing JPEG compression, rotation, cropping, resizing, Gaus-
sian blur, noise, color jitter, and sharpness (see supple-
ment). CustomMark maintains high attribution and bit ac-
curacy, with minimal impact from common distortions like
JPEG compression and rotation, while stronger distortions
(e.g., Gaussian blur, noise) cause slight accuracy drops.
Against adversarial attacks [78], it retains 82.21% attribu-
tion accuracy, only slightly lower than the original 91.11%.
These results highlight CustomMark’s resilience in real-
world scenarios.

Bit Secret Length Fig. 8(a) analyzes the effect of secret
length on bit accuracy, attribution accuracy, and CLIP score.
As the secret length increases, both accuracy metrics de-
cline, suggesting that longer secrets are harder for the de-
coder to recover, impacting attribution performance. Ad-

ditionally, the CLIP score drops, indicating stylistic devi-
ations. This trade-off suggests that a moderate bit length,
such as 16, balances attribution accuracy and stylistic fi-
delity.

Number of Concepts. Fig. 8(b) examines how the number
of unique artist concepts affects attribution and stylistic fi-
delity. As concepts increase, bit and attribution accuracy de-
cline, likely due to the growing challenge of distinguishing
among them. Similarly, the CLIP score drops, suggesting
that maintaining stylistic consistency becomes harder with
a broader range of styles in watermarked images.

Scaling Factor. Fig. 8(c) shows the impact of the scaling
factor in Eq. (6) on attribution and stylistic similarity. In-
creasing the scaling factor sharply reduces both bit and at-
tribution accuracy, likely due to overpowering the sampled
Gaussian noise. Conversely, decreasing it causes the LDM
to diverge, generating noise images, as reflected in the de-
clining CLIP score. This underscores the need for a low
scaling factor to balance attribution accuracy and stylistic
preservation, leading us to select 0.01 for our experiments.

5. Conclusion

We propose CustomMark, an efficient and flexible tech-
nique for enabling concept attribution in pre-trained text-
to-image LDMs. Addressing the growing demand for ethi-
cal content generation in GenAI models, CustomMark pro-
vides a customization-based approach to embed concept-
specific watermarks, allowing artists to request attribution
for their work. Unlike previous methods, CustomMark al-
lows selective attribution without requiring all concepts to
be predefined before training, and entire watermarking of
the training data. It supports sequential learning to add new
concepts in an online way. We demonstrate that Custom-
Mark can handle hundreds of artist styles and diverse Ima-
geNet classes while maintaining image quality and ensuring
robust attribution. By fine-tuning the model for new con-
cepts with minimal computational overhead, CustomMark
streamlines the attribution process. This helps bridge the
gap between GenAI developers and the creative community
and promotes the responsible use of GenAI in content cre-
ation.
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