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Abstract

We present ImProvShow; a novel approach to summarizing the multi-stage edit his-
tory (or ‘provenance’) of an image. ImProvShow fuses visual and textual cues to suc-
cinctly summarize multiple manipulations applied to an image in a sequence; a novel ex-
tension of the classical image difference captioning (IDC) problem. ImProvShow takes
as input several intermediate thumbnails of the image editing sequence, as well as any
coarse human or machine-generated annotations of the individual manipulations at each
stage, if available. We demonstrate that the presence of intermediate images and/or auxil-
iary textual information improves the model’s edit captioning performance. To train Im-
ProvShow, we introduce METS (Multiple Edits and Textual Summaries) — a new open
dataset of image editing sequences, with textual machine annotations of each editorial
step and human edit summarization captions after the 5™, 10 and 15™ manipulation.

1 Introduction

With recent advancements in Generative Al, image manipulation becomes easier to perform
and harder to notice, motivating new techniques for auditing the edit history (or ‘prove-
nance’) of an image. Often, multiple edits are applied in sequence by one or multiple editors,
forming a provenance chain containing multiple versions of the image at different stages of
the editing process. To mitigate the spread of disinformation, it is important to succinctly
communicate the history of these changes to enable informed trust decisions [17].

Image difference captioning (IDC) usually aims to generate a difference caption given
two images, the original and the edited one, regardless of the number of manipulations ap-
plied to the image. In this work, we explore image difference captioning with multiple inputs
(IDC-MI), assuming access to multiple snapshots of the image editing sequence and/or aux-
iliary information about each individual edit. This commonly arises during a creative supply
chain where multiple editors contribute to a final image. For example, emerging metadata
standards for media provenance, such as the Coalition for Content Provenance and Authen-
ticity (C2PA) [7] collect rich information on this edit process in a provenance ‘manifest’.
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This data structure contains multiple versions (thumbnails) of the image at different stages
of the editing process, and optionally textual short descriptions of changes made (actions).
Many image editing tools e.g. Adobe Photoshop now write C2PA manifests into editted im-
ages. ImProvShow considers the use case of IDC-MI to aggregate this multi-modal context
(thumbnails and actions) and summarize it in a short textual description.

A rangsr miniature has been replaced Rangers miniatures are repiaced with a pencil
with a noisy bird miniature. pot and birds have noise applied to them.

Overlay
Stripes

ImProvShow

[ The miniatures are replaced with two neoisy flamingos and a pencil cup. ]

Figure 1: ImProvShow is capable of processing sequences of images, optionally accom-
panied by coarse edit annotations, to produce a succinct and informative summary of the
differences. We train it with METS — a novel dataset of long image editing sequences paired
with machine annotations and human-written summaries at multiple steps. The presence of
visual and/or text information at any edit stage is optional, as denoted with grey arrows.

The first challenge in edit sequence captioning is the limited availability of training data.
Most datasets for image difference captioning focus on image pairs rather than longer se-
quences. While the Magic Brush [58] dataset does provide multi-turn editing sequences,
they are limited to three steps at most. Furthermore, all of the edits are applied to different
non-overlapping objects, meaning that the final summary of all the manipulations could be
constructed from a concatenation of the description of the individual steps. However, in real
scenarios, the edits can be applied to the same area, potentially in a destructive or mutu-
ally exclusive manner, and the final summary should only describe the salient, still visible
changes. For example, suppose the first manipulation changes the color of a bicycle, and
the second one replaces the bicycle with a car. In that case, the final summary should not
mention the color change as it is irrelevant to the final result. The second challenge lies in
developing a methodology capable of handling interleaved multi-modal inputs. Many exist-
ing image difference captioning architectures are designed with exactly two image inputs in
mind and would not be able to scale beyond that, either due to architectural constraints or
memory limitations. The contributions of this paper are twofold:

1. First, we introduce METS (Multiple Edits and Textual Summaries) — a dataset of im-
age editing sequences, with textual machine annotations of each editorial step and
human edit summarization captions after the 5th, 10th, and 15th manipulation.

2. We train ImProvShow — a multi-modal LLM trained to fuse visual and textual cues to
produce multi-edit summaries. We provide a comprehensive evaluation of the benefits
of both additional visual and textual inputs at the IDC-MI task.

We demonstrate that the presence of intermediate images and/or auxiliary textual infor-
mation improves the model’s captioning performance. Note that whilst the proposed method
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Inpainting Property Change

Replacement

Prompt Background Blueberry muffin with rainbow sprinkles Banana

Figure 2: Illustration of the different types of manipulations performed. (left) Inpainting is
done by using the word background as the prompt. (middle) property change is done by
prompting GPT3.5 to output a likely change in color, material, texture or other applicable
property of the object. (right) replacement is done by prompting GPT3.5 to output a re-
placement object of close match to the original shape but different semantically.

benefits from auxiliary textual data, it does not require it. Additionally, we demonstrate
that fine-tuning a model trained on other synthetic data with METS helps to bridge the do-
main gap and improves zero-shot performance on real-world images. The illustration of
ImProvShow and METS is shown in Fig. 1.

2 Related Work

Image difference captioning (IDC) is closely related to image captioning and visual question
answering, both requiring a visual understanding system to model images and a language
understanding system capable of generating syntactically correct captions. The revolution of
IDC in recent years depends heavily on the advent of visual and text modeling approaches,
together with cross-domain learning techniques that bridge the representation gap.

Initial methodologies for modeling visual content involve incorporating overarching CNN
features such as VGG [10], and ResNet [41] into text generation models. Some methods
[2, 18, 23, 31], partition images into discrete patches, extracting CNN features from each.
Conversely, certain methodologies opt to utilize the outputs from an early ResNet layer,
effectively capturing spatial attributes in a gridded format. In contrast, [2, 8, 23] employ
Region Proposal Network (RPN) to extract features from potential object candidates. Other
avenues of exploration include graph-based [55] and tree-based networks [57], aiming to
capture object relations across varying levels of granularity.

Traditionally, RNN/LSTM architectures [16] have dominated text modeling. Variants
like single-layer RNN [33, 53] or double-layer LSTM [2, 10, 57] are commonly utilized
with diverse methods to embed image features into the recurrent process, such as additive
attention [44]. During inference, captions are generated in a step-by-step manner, where the
prediction of each word depends on all preceding words. Although this enhances linguis-
tic coherence, RNN/LSTM-based approaches face challenges in modeling lengthy captions.
Recent transformer-based methods employing full-attention [8, 32, 54], have alleviated this
issue. Others such as BERT [9], GPT [5], and LLaMA [46] have demonstrated success
across diverse visual-language tasks [15, 22, 30, 35, 59].
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The objective of visual language modeling is to establish connections between image/video
and text representations, catering to specific tasks like joint embedding (e.g., CLIP [40]
and LIMoE [36] for cross-domain retrieval), text-to-image tasks (e.g., Stable Diffusion [42],
InstructPix2Pix [4]), and image-to-text tasks (e.g., visual question answering [, 54], or in-
structions [12, 15]). Image captioning, strategies for mapping images to text can be classified
into two main approaches. The first involves the early fusion of image and text features to
enhance alignment between image objects and textual descriptions [30, 35, 48, 54]. These
methods employ BERT-like training strategies, where a pair of images and a masked caption
are inputted, replacing the masked words during inference. The second approach centers
on learning a direct conversion from image to text embedding. Initial CNN-based methods
incorporate image features as the hidden states of LSTM text modules [10, 27, 41, 53, 57],
whereas later transformer-based techniques favor cross-attention mechanisms [8, 32]. No-
tably, recent trends in both approaches involve harnessing powerful pretrained large lan-
guage and vision models to establish a straightforward mapping between the two domains
[6, 13,29, 34, 35, 48].

Image difference captioning represents a specialized form of image captioning, aiming to
disregard common objects across images and instead accentuate subtle alterations between
them. Spot-the-Diff [25] introduces potential change clusters, employing an LSTM-based
network to model them. However, their approach relies on pixel-level differences between
input images, rendering it sensitive to noise and geometric transformations. In contrast,
DUDA [39] computes image differences at the semantic level using CNNs, enhancing ro-
bustness against minor global alterations. Several approaches extend the foundation laid by
DUDA. SRDRL+AVS [50] assesses the correlation between the subtracted difference and
image pairs to ascertain the occurrence of the change, incorporating part-of-speech infor-
mation. M-VAM [43] and VACC [28] propose a viewpoint encoder to mitigate viewpoint
disparities, while VARD [51] suggests a viewpoint invariant representation network to ex-
plicitly capture changes. Additionally, [45] integrates bidirectional encoding to refine change
localization, and NCT [52] utilizes a transformer to aggregate neighboring features. These
methodologies concentrate on the image modality, exploiting benchmark-specific character-
istics such as nearly identical views in Spot-the-Diff [25] or synthetic scenes with limited
objects and change types in CLEVR [39]. More recently, IDC-PCL [56] and CLIP4IDC
[19] have adopted BERT-like training approaches to model difference captioning language.

3 Methodology

We describe the method for generating the METS (Multiple Edits and Textual Summaries)
dataset and model training for the multi-input image difference captioning (IDC-MI) task.

3.1 Data generation

We generate a dataset of image editing sequences, with textual machine annotations of each
editorial step and human edit summarization captions after the 5th, 10th, and 15th manipu-
lation, as shown in Fig. 3. Binary masks of the manipulation regions at each step are also
included. Our dataset covers a wide variety of pixel-level and generative manipulations. The
prompt for each manipulation is generated using GPT-3.5 to ensure diverse manipulations.

3.1.1 Individual Edits

We identify two main categories of edits: pixel-level and generative manipulations. Pixel-
level edits are simple manipulations such as changing the brightness of an image or applying
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Original Edit10 Edit 15

Machine Annotations

d
d, nothing applisd

reased moderately

Human Annotations Two geese are removed. “Two birds are removed, one is “Two Canada gooses are

slightly changed, and one is missing, and one is replaced
replaced with a flamingo’ with a swan’

Figure 3: An example of a sequence of manipulations in METS. The original image is shown
in the first column, followed by the manipulated images. The binary masks of the manip-
ulated regions are superimposed on the images. The machine annotations generated during
the sequence creation are shown in orange, while the human annotations are shown in blue.

a blur filter. Generative manipulations change the semantic content of the image.

The image, its localized narrative, object class name, and segmentation mask are sampled
from the Openlmages dataset. The localized narrative and class name are used to construct
a prompt for GPT3.5, which outputs a likely replacement candidate object or a property
change. The prompt templates are manipulation-type specific and can be seen in suppmat.
In the case of inpainting, the GPT3.5 block is omitted, and the prompt is simply background.
The pre-processing of the segmentation mask ensures that no part of the object remains
outside of the mask. The generative manipulation is then conditioned on the image, the
mask, and the prompt and applied using Firefly Generative Fill.

Pixel level manipulations are performed using the Augly[38] library, with random aug-
mentations including brightness, contrast, saturation, and encoding quality; blur, noise and
sharpness filters; and overlaid color stripes. We further divide generative manipulations into
three categories: inpainting where an object is removed from the image, replacement where
an object is replaced with another object, and property change where the object’s material
properties are altered. We illustrate different types of manipulations in Fig. 2.

Generative manipulations are applied using the Adobe Firefly Generative Fill' tool,
which is a language-guided inpainting GenAl model. In addition to the image itself, the
model is provided with a segmentation mask and a text prompt. We generate a convex hull
of the segmentation mask and apply dilation to it to ensure that no part of the object remains
outside of the mask. The origin of the text prompt depends on the type of manipulation.
For inpainting we use the word background, which was shown to perform on par with
inpainting-specific models. For replacement, we use GPT3.5 in a few-shot learning man-
ner, prompting with a localized narrative for the whole image, a bounding box of the mask,
and the class label of the mask to come up with a probable replacement candidate object that
would be a close match to the shape of the original object. We use a similar strategy for
property change, but prompting GPT3.5 to output a likely property change.

3.1.2 Sequence Generation

We sample Openlmages, using images with at least 5 non-overlapping segmentation masks.
We then follow a procedure illustrated in Fig. 4 to apply a sequence of edits to the image.

Imttps://firefly.adobe.com/upload/inpaint
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Py
Pixel-Level
13 Inpainting

Pg 1/3

START Select Mask Apply Edit Generative Replacement Update Probabilities

13 Property Change

Pn
More Masks? > >

Update Probabilities YES

Figure 4: The diagram of the sequence generation process. For each image, we first go
through up to 15 segmentation masks and apply edits, chosen randomly, where the probabil-
ities of choices depend on the number of edits already applied to the mask.

At each iteration step, we pick a segmentation mask and either apply a generative or a pixel-
level manipulation to that area of the image or move on to the next mask. The probability of
switching to the next mask is proportional to the number of manipulations already applied.

Formally, we define the probabilities of applying a generative manipulation Py, a pixel-
level manipulation P, and moving on to the next mask P, as follows: P, = g —75; |, =
(1-g)—5: P, =1—P;—P,, where g = 0.9 if no generative manipulations have been applied
to the mask yet and g = 0.1 otherwise. The value of n is proportional to the number of
manipulations already applied to the mask, defined as follows:

40 X (i — imin)

n = max(0, 100 ),

)]
where i is the current step and i,,;, is the minimum number of steps required to move on to
the next mask. We set i,,;, = 5.

After each manipulation step, we record the type of manipulation, the parameters of
the manipulation, and the binary mask used to apply the manipulation. This information is
saved in a text format. For pixel-level manipulations, the text format is as follows: Object :
obj_name, manipulation: edit_name, intensity: intensity;where obj_name
is the name of the object annotated within Openlmages, edit_name is the manipulation
type and intensity is chosen at random from a set of predefined parameters, individual
for each manipulation type.

For generative manipulations, the format is: Object: obj_name, replacement:
prompt ; where prompt is either background for inpainting or the output of GPT3.5 for
replacement and property change manipulations. Examples of the template-generated text
can be seen from Fig. 3, marked as machine annotation.

As a result, for each input image, we obtain a sequence of manipulated versions ap-
plied on top of each other and a list of annotations describing each manipulation step type,
parameters, and location. We generate 1000 such sequences averaging 21.4 steps/sequence.

3.1.3 Labelling

We collect human annotations for difference summarization at the 5th, 10th, and 15th step of
the manipulation sequence. In each task, the users are presented with the input image 7 and
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{training Target 1 Prediction

|
A goose is replaced with a cat, a baby geese is removed, and purple- | One goose is replaced with a cat, one goose is removed and another|
translucent patches are added to the other. £; one is covered in purple patches

L& LLaMA-2
1 1 ‘ T_ i 1 1

[</img> [</me> | [ lidel what are the

| Duck, overlay stripes, |Duck, || differences between

|line width: 0.53, |Replacement: cat| | the images? [\INST]

| line color: (94, 33, 191),

3 line angle: 189,

| line density: 0.42,

|line type: dotted,
line opacity: 0.64

(INSTI<Img>

Figure 5: Architecture of the ImProvShow model. The LLaMA-2 language model is con-
ditioned using the multi-modal instruction template, which includes at least two image fea-
tures and optional auxiliary textual information. All optional content is placed within dashed
boxes. The image features extracted from the ViT image encoder are concatenated in groups
of 4 and projected to the LLM embedding space.

an output image I, n € 5,10, 15] and are asked to provide a short one-sentence summary of
all of the differences they see between the two images (Fig. 3).

3.2 Architecture

Our architecture is illustrated in Fig. 5. Our setup consists of a Vision Transformer (ViT)
[11] image encoder and the open-sourced LLaMA2-chat (7B) large language model [47].
The visual tokens are concatenated in groups of 4 and projected to the language model’s
embedding space with a linear projection layer. During training, the visual encoder weights
are frozen, and only the language model and the projection layer are trained.

Uniquely, we use multiple images as input to the model and train it for the task of image
difference captioning. We note that this approach is capable of handling an arbitrary number
of input images, which allows us to input several snapshots of editing sequence at once.

Optionally, we provide the model with auxiliary textual information in the form of ma-
chine annotations, described in Section 3.1. The annotations for each manipulation are in-
terleaved with the image features and are used to guide the model’s attention. We follow the
multi-modal instructional template from [6] and adjust it to our task:

[INST] <Img><ImageFeature></Img> T ... <Img><ImageFeature></Img> T [idc] ins [/INST]

where the image feature tags are repeated for each input image in the sequence, T is
the optional auxiliary textual information, [idc] is the task identifier for image difference
captioning and ins is the instruction that is chosen at random from a set of predefined
instructions, all synonymous with describe the differences between the images..

Training minimizes the captioning loss £ = —Y7 I(s",s},...,s}), where m is a vari-
able token length and [ is next-token log-probability conditioned on the previous sequence
elements: [(s",s,...,st) =logp(ti|x,t1,....ti-1).

3.2.1 Training

All models are trained on a single A100 GPU with 80GB of memory for 300 epochs with
1000 steps per epoch and batch size 6. We use AdamW with a cosine learning rate scheduler
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with an initial learning rate of 10> and a warmup learning rate of 10~° for 1000 steps. The
input image size is 448 x 448, and maximum token length is 1024.

4 Experiments
4.1 Datasets

In addition to our own METS dataset, we train and evaluate our model on a number of other
datasets used in the image difference captioning literature (sup. mat shows examples).
CLEVR-Change [26] consists of 67,660, 3,976, 7,970 training, validation, and test image
pairs, respectively. The images are generated using the CLEVR engine and contain renders
of primitive 3D shapes. The types of edits include changes in shape, color, material, size,
and position of the objects. This dataset serves as a good benchmark due to its large volume
and precise annotations. However, the synthetic nature of the images creates a large domain
gap, making it difficult to generalize to real-world images.

Spot-the-Diff [25] is a dataset of 13,192 well-aligned image pairs from CCTV cameras.
There are no viewpoint changes, and the edits are limited to object addition, deletion, or
movement. We follow the official dataset split of 80%, 10% and 10%.

PSBattles [20] is a dataset of real-world image pairs collected from the Photoshop Battles
subreddit. The difference captions for a subset of the dataset were collected by [3] in a user
study. We use this dataset to evaluate generalization to real-world images.

InstructPix2Pix [4] is a dataset of ~1M image pairs generated with prompt-to-prompt [21]
approach. The difference captions are later generated by [3] using chatGPT-3. We use this
dataset for pre-training of the model during the evaluation in the PSBattles dataset to assess
the benefits of fine-tuning on the METS dataset for domain adaptation.

MagicBrush [58] contains sequences of edited images generated in a manner similar to ours,
but with human supervision. Due to the need for human supervision, the maximum length
of the sequences is limited to 3 steps. Of 878 training sequences, only 304 have a length of
4 (including the original image), and 547 have a length of 3. We use this dataset to evaluate
the model’s performance in the IDC-MI setting, using only the samples that have a length of
4. The target annotation is a concatenation of the instructions for each step. As input, we use
either the first and the last image in the sequence or all four images in the sequence.

4.2 Evaluation

We evaluate the performance of our model on the standard IDC setting on the CLEVR-
Change, InstructPix2Pix, and PSBattles datasets. We evaluate the performance of our model
in the IDC-MI setting on the MagicBrush and our proposed METS datasets. In both cases,
we use the standard n-gram based metrics BLEU-4 (B4), CIDEr (C), METEOR (M), ROUGE-
L (R) and SPICE (S) to evaluate the performance of our model. Additionally, we use LLM-
as-judge metric to assess the semantic similarity of the captions that n-gram based metrics
struggle to capture. We use GPT4 to score the semantic similarity of each text pair as "low’,
’medium’ or ’high’ and report the percentage of medium and high scores.

4.2.1 Evaluating IDC with Multiple Inputs

For IDC-MI, we evaluate the model’s performance while varying the number of input images
and the presence of auxiliary textual information. The intermediate images are sampled to
be equally spaced in the sequence, and the textual information is provided in the form of ma-
chine annotations described in Section 3.1. We baseline the performance of our model with
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Table 1: Performance evaluation in the IDC-MI setting shows BLEU-4 (B4), CIDEr (C),
METEOR (M), ROUGE-L (R) and LLM as judge medium (L. (M)) and high (L (H)) scores.
We report the performance of our model and compare it with GPT3.5 and GPT4-V, varying
the number of input images and the presence of auxiliary textual information.

Model Images Text B4 C M R LM) L®H)
METS
GPT3.5 [5] 0 yes 1.6 8.6 104 15.1 16.2 0.6
GPT4-V [14] 2 no 40 186 14.0 203 22.2 2.6
GPT4-V[14] 2 yes 1.3 03 115 135 19.7 0.9
GPT4-V[14] 4 no 30 151 134 199 269 1.9
GPT4-V[14] 4 yes 14 04 11.6 129 24.1 1.2
ImProvShow-2 (ours) 2 no 58 207 114 23.1 22.6 9.4
ImProvShow-2T (ours) 2 yes 7.8 258 13.0 26.0 24.3 11.0
ImProvShow-4 (ours) 4 no 6.6 235 123 243 22.6 9.6
ImProvShow-4T (ours) 4 yes 82 259 134 263 30.1 124
MagicBrush
ImProvShow-2 (ours) 2 no 49 294 133 28.1 - -
ImProvShow-4 (ours) 4 no 68 445 156 31.2 - -

GPT4-V, which has multi-modal capabilities and is capable of taking multiple images and/or
text as input. We compare with GPT3.5, which serves as a text-only baseline (Table 1). Our
method is able to take advantage of the additional inputs, achieving the best performance
when both intermediate images and auxiliary textual information are present.

Compared to the base case of just two-image input, the addition of text to our model im-
proves the performance by an average of 18.9% across all metrics, and intermediate images
improve the performance by an average of 10.1% across all metrics. The combination of in-
termediate images and textual information shows improvement of 22.4% across all metrics.
On the other hand, the performance of GPT4-V suffers from the addition of intermediate
images, decreasing with the addition of extra images and text.

4.2.2 Evaluating IDC with Two Inputs

In the IDC setting, shown in Table 2, the model achieves competitive performance on the
CLEVR-Change dataset, outperforming the previous state-of-the-art VARD on the CIDEr
and ROUGE-L metrics. On the InstructPix2Pix dataset, the model outperforms VIXEN
only on the METEOR metric. However, it shows a better capability to generalize to real-
world images, outperforming VIXEN on the PSBattles dataset. Fine-tuning the model on the
METS dataset further improves its performance on PSBattles, showing the dataset’s ability
to bridge the domain gap between synthetic and real-world images.

5 Conclusion

We introduced ImProvShow, a novel multimodal approach for summarizing multi-stage
image edit histories (provenance), extending the conventional image difference captioning
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Table 2: Image difference captioning performance evaluation on CLEVR-Change and PS-
Battles. We compare our model with the state-of-the-art models and report BLEU-4 (B4),
CIDEr (C), METEOR (M) and ROUGE-L (R) scores.

MODEL TRAINING DATA B4 C M R S
CLEVR CHANGE
DUDA [39] CLEVR 47.3 112.3 339 - -
IFDC [24] CLEVR 49.2 118.7 32.5 69.1 -
R3NET+SSP [49] CLEVR 547 123.0 39.8 73.1 -
SGCC [37] CLEVR 51.1 121.8 40.6 73.9 -
NCT [52] CLEVR 55.1 124.1 40.2 73.8 -
SRDL+AVS [50] CLEVR 54.9 122.2 40.2 733 -
VARD [51] CLEVR 552 124.1 40.8 74.1 -
IMPROVSHOW-2 (OURS) CLEVR 54.7 151.8 40.0 771 -
SPOT-THE-DIFF
SRDL+AVS [50] SPOT-DIFF - 35.3 13.0 31.0 18.0
R3NET+SSP [49] SPOT-DIFF - 36.6  13.1 32.6 18.8
VARD-LSTM [51] SPOT-DIFF - 39.3 13.1 33.1 17.5
VARD-TRANSFORMER [51] SPOT-DIFF - 30.3 12.5 293 17.3
IMPROVSHOW-2 (OURS) SPOT-DIFF - 45.5 13.7 28.7 193
PSBATTLES
VIXEN-C [3] IP2P 4.5 7.7 9.5 20.5 -
IMPROVSHOW-2 (OURS) IP2P 5.3 10.3 10.8  22. -
IMPROVSHOW-2 (OURS) 1P2p + METS 5.5 14.2 11.2  22.6 -

(IDC) task to image difference captioning with multiple inputs (IDC-MI). Our method effec-
tively fuses visual and textual information to generate concise summaries of complex editing
sequences. ImProvShow is motivated by the real-world task of summarizing provenance
metadata, to communicate the change history (provenance) of an image. Such metadata (e.g.
C2PA [7]) includes the original and final editted image with intermediate image and text
data, and is now output by many tools (e.g. Adobe Photoshop, Adobe Lightroom).

To support this research, we introduced METS—a dataset of multi-step image editing
sequences containing both machine-generated annotations and human-authored summariza-
tion captions. We showed that incorporating intermediate images and auxiliary text signif-
icantly improves performance: ImProvShow achieves a 30.1% LLM similarity score with
four images and text, outperforming GPT-4V’s 26.9%, and reaches a CIDEr score of 25.9,
surpassing GPT-4V’s 15.1. In the two-input IDC setting, ImProvShow achieves state-of-
the-art results, scoring 151.8 CIDEr on CLEVR-Change and 45.5 CIDEr on Spot-the-Diff.
Fine-tuning on METS further improves generalization, boosting CIDEr on PSBattles from
10.3 to 14.2. Future work could explore evaluation on more recent vision-language models
and self-verification mechanisms to improve reliability.
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