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Abstract

Imperceptible digital watermarking is important in copy-
right protection, misinformation prevention, and responsi-
ble generative Al. We propose TrustMark - a watermarking
method that leverages a spatio-spectral loss function and a
1x1 convolution layer to enhance encoding quality. Trust-
Mark is robust against both in-place and out-of-place per-
turbations while maintaining image quality above 43 dB.
Additionally, we propose ReMark, a watermark removal
method designed for re-watermarking, along with a simple
yet effective algorithm that enables both TrustMark and Re-
Mark to operate across arbitrary resolutions. Our methods
achieve state-of-art performance on 3 benchmarks'.

1. Introduction

Advances in generative Al (GenAl) present fresh chal-
lenges in combating misinformation and identifying the
origins (provenance) of images. Emerging content prove-
nance standards (e.g. C2PA [16]) address this challenge by
embedding metadata within images to describe how they
were created. However, such metadata is often removed
by non-compliant platforms (e.g. social media) as images
are posted and shared. Digital watermarking offers a way
to embed an imperceptible identifier that may be used to
recover provenance information in this situation [19]. In
this paper we propose TrustMark, a novel image watermark-
ing model that can be applied to general images (photos or
GenAl) in order to help identify their provenance.

The goal of (imperceptible) image watermarking is to
embed a message (here, provenance data) directly within
the image content in such a way that the changes to the im-
age are imperceptible yet detectable by a ‘watermark de-
coder’. TrustMark is designed to address several require-
ments specific to image provenance. First, provenance is a
non-steganographic use case for watermarking, where pub-
lic detection and decoding is required, not conditional on
any secret key. For example, a web browser may detect a

"Models and code are released under MIT license at https: //
github.com/adobe/trustmark.

watermark, and so present provenance data to enable users
to make more informed trust decisions about an image. Sec-
ond, creative tools may (re-)encode these openly detectable
identifiers in images as they are edited. Third, a key con-
sideration for creative practice is visual quality degradation
due to watermarking, and ‘re-watermarking’ (watermark re-
moval and replacement). Creative imagery is often high
resolution, and the watermark should be imperceptible. Fi-
nally, the watermark should robust to non-editorial transfor-
mations (renditions) performed by content platforms such
as social media. Many robust watermarks operate only over
fixed resolutions [13, 40, 48, 66, 77]. We propose Trust-
Mark to address these challenges. Our contributions are:

1. State-of-art watermarking performance. We extend
the existing encoder-decoder based watermarking methods
[66, 73, 77] with a new backbone, a post-process layer and
a novel frequency-based (FFL) loss for improved preserva-
tion of high frequency detail in the watermarked image. Ro-
bustness of the encoding is encouraged via extensive noise
simulation during training. TrustMark achieves state-of-art
performance in both imperceptibility and watermark recov-
ery on three benchmarks.

2. Watermark removal network ReMark, to restore the
original image with high quality, useful for applications
such as re-watermarking.

3. Resolution Scaling method to extend TrustMark, Re-
Mark and other watermarking methods to operate over im-
ages of arbitrary resolution.

TrustMark thus addresses practical challenges across the
watermark lifecycle for creative work: imperceptibility and
robustness; scaling for arbitrary resolution; and ReMark en-
abling high quality restoration for re-watermarking.

2. Related work

Media provenance is the focus of cross-industry coalitions
(e.g. CAI [60], Origin [3]) and emerging standards (e.g.
C2PA [16]) that encode a metadata ‘manifest’ within an im-
age, containing information on its origins. When that meta-
data is stripped, a perceptual hash [5, 6, 52] can be used
to lookup the manifest in a database or distributed ledger
e.g. blockchain [8, 9]. Yet reliance on near-duplicate search
is inexact, and provides no signal to trigger such a lookup.
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Figure 1. Proposed architecture of TrustMark (a). The embedder E encodes a watermark into a cover image robustly using a noise module
N to simulate common perturbations on the encoded image. The extractor X recovers the watermark from the encoded image. The ReMark
network (b) removes the watermark to enable re-watermarking of the image.

(Re-)watermarking provides an alternative — to insert and
update an imperceptible identifier to recover stripped meta-
data that ‘good’ actors may insert to optionally reinforce
the authenticity of their content. Given the opt-in nature of
provenance, we do not consider stripping of provenance (or
watermark) to be a concern as this reduces rather than raises
authenticity of content. Indeed it may be a useful step in
enabling re-watermarking of content to update provenance
data as an image is editted.

Classical Watermarking explored Least Significant Bit
(LSB) [69] to embed a secret in the lowest order bits of
each pixel, producing images perceptually indistinguish-
able from the original (‘cover’) image. Since then, several
techniques have exploited the spatial [29, 47, 64] and fre-
quency [34, 35, 43, 51, 56, 58] domains to embed the se-
cret. A classical watermark of relevance is dwtDctSvd [51]
often used to watermark Stable Diffusion generative Al im-
ages. Stirmark [54] was a classical benchmark important in
driving early advances in robustness using noise, filtering
and geometric transformations. More recently evaluations
added colour and other non-geometric perturbations in ad-
dition to these kinds of transformations, and we evaluate
similarly for TrustMark.

Deep Watermarking has been shown to provide robustness
to noises while maintaining good quality of the generated
image [68]. HiDDeN [77] was the first end-to-end trained
watermarking network that used the encoder-decoder ar-
chitecture for watermark embedding. This was followed
by several later works [14, 21, 50, 66, 70, 73] with great
improvement in embedding quality and robustness. These
works mostly encode secrets and covers jointly, often with
an UNet-like model and skip connections to preserve small

details in the cover images [21, 66, 73]. Notably, StegaS-
tamp [66] incorporates spatial transformers for robustness
against geometric transformations. RivaGAN [73] employs
attention mechanism for video watermarking. SSL [25]
takes a different approach, watermarking images in the la-
tent space at inference time via back-propagation, achieving
superior imperceptibility score at cost of speed. RoSteALS
[13] also proposes to watermark via the latent code of a
frozen VQVAE [22], achieving state-of-art robustness how-
ever its imperceptibility is limited by VQVAE [22] recon-
struction quality. Recently region watermarking has been
explored for localized embedding [61] or manipulation de-
tection [74]. Other recent techniques train GenAl models to
embed watermarks during generation [2, 24, 26, 72], which
are less general than TrustMark which, as a ‘post-hoc’ ap-
proach, may be applied to any image.

Watermark removal has been investigated in the con-
text of inpainting visible watermarks [15, 20, 49, 53]
but invisible watermark removal and its application in
‘re-watermarking’ are not yet explored. We show that
naive watermark removal (using adversarial attacks) and re-
watermarking (simply applying new watermarks on a wa-
termarked image) methods worsen image quality (Sec. 4.4).
A recent work by Zhao et al. [76] leverages random noise
to destroy the watermark followed by generative Als to re-
cover the image. We show that [76] struggles to work on ro-
bust watermarking models such as TrustMark; also images
recovered by generative Als tend to visually differ from the
originals (also reported in [13]). In contrast, our ReMark
significantly improves image quality and is useful even af-
ter multiple watermarking times.

Arbitrary resolution is not a problem for shallow water-



marking methods [51] since they mostly operate on fre-
quency spectrum. On the other hand, the rigid encoder-
decoder architecture of deep methods constrains the em-
bedding at a fixed resolution that the network is designed
for e.g. HiDDeN [77] operates at 128 x 128, RoSteALS
[13] at 256 x 256, StegaStamp [66] at 400 x 400. Riva-
GAN [73] works on arbitrary resolution because their en-
coder maintains the image spatial resolution during water-
marking i.e. no bottleneck layer. In contrast, we propose
Resolution Scaling as a flexible post process that can be ap-
plied to any fixed resolution watermarking methods.

3. Methodology

We describe our watermarking network (TrustMark) and
the watermark removal network (ReMark), both operate on
256 x 256 fixed-resolution images, in Sec. 3.1 and Sec. 3.2
respectively; and outline how the two can be adapted to
work on arbitrary resolution images at inference time in
Sec. 3.3.

3.1. Watermarking network

Inspired by HIDDEN [77] and StegaStamp [66], TrustMark
(Fig. 1a) also comprises an embedder module E to encode
the watermark into a host (‘cover’) image, an extractor mod-
ule X to recover the watermark from that image, and a noise
module N to perturb the image during training. We describe
each component and the difference below.

3.1.1. Watermark Embedder

The embedder network E first accepts a cover image X
€ R256x256x3 and a watermark w € {0,1}' (with [ be-
ing the watermark size) into its pre-processing module
Epre(x,w) € R256%256Xd where d is the internal feature
dimension. Following [4, 66], we design E,,. as an early
image-watermark fusion network — the watermark is inter-
polated to match the cover image’s dimension, then the con-
catenated cover-watermark feature map is convolved with
d 3 x 3 filters to make a d-channel image output. Dif-
ferently, we employ a MUNIT-based [38] network origi-
nally designed for style transfer as our watermark backbone.
Specifically, we remove channel normalization, double the
network depth but halve the internal dimension, effectively
reducing the model size 2x. Finally, a post-process module
converts MUNIT’s n-channel output back to the RGB space,
X = Epost(.) € R?56%256x3 While this could be imple-
mented using just a single convolutional layer [4, 66, 77],
we found that a more complex E, . is needed to retain
high frequency details in the encoded image. We there-
fore leverage multiple 1 x 1 convolution layers which act
as channel-wise pooling layers commonly used in dimen-
sionality reduction and feature learning networks [44, 63].
These 1 x 1 convolution layers are separated by SiLU and
end with a tanh() activation to constraint the output pixel
values to range [—1,1]. Note that our embeder E outputs
the encoded image directly, y = E(x, w), instead of esti-
mating the residual artifacts to be added to the cover image
as in StegaStamp [66] or RivaGAN [73].

Algorithm 1: Resolution scaling for watermark
embedding and removal.

Input: Input image x, trade-off factor A > 0,
[binary watermark vector w]

Output: Restored image y

Data: Embedding network E or Removal network R

H, W := x.height, x.width

X < X/127.5 —1 // Normalize to range [-1,1]

X := interpolate(x, (256, 256))

if model is watermarking then
| r:=E(Xw)-X

else

7 | r:=R(X)-X

r < interpolate(r, (H, W))

y < clamp(x + Ar,—1,1) // trade-off control

10y << y=127.5+127.5
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3.1.2. Watermark extractor

The extractor network X aims to decode the watermark
from the encoded image, w = X(y) € {0,1}. This is
challenging as the watermark signal is perceptually invisi-
ble. We observe that only resnet-based networks supervised
under a particular training scheme fit the task (c.f. Sec. 4.1
and Sec. 4.5). Here we employ the standard ResNet50 [32]
with the last layer being replaced by a [-dimension sigmoid-
activated FC to predict the [-bit watermark.

3.1.3. Noise model

Robustness to noises is an important factor for invisible
watermarking. To expose the extractor X to various noise
sources when it is being jointly trained with the embed-
der E, we insert a noise model N after the encoded image -
y = N(y). N consists of 3 geometrical transformations (ran-
dom flip, crop and resize) and 15 perturbation sources (ran-
dom JPEG compression, brightness, hue, contrast, sharp-
ness, color jitter, RGB shift, saturation, grayscale, Gaussian
blur, median blur, box blur, motion blur, Gaussian noise,
posterize). Each encoded image is perturbed with 3 geo-
metrical transformations (‘base transforms’ in Fig. 1) and 2
other random noises (‘optional transforms’). All 18 trans-
forms are differentiable so that errors can be propagated
back to the embedder. More details are in the Sup.Mat.

3.1.4. Losses

Overall, training TrustMark involves balancing image qual-
ity (via E) with watermark recovery (via X) in the presence
of complex noise simulation.

Liotal = Oél:quality (X7 y) + ‘Crecovery(w, ﬁ)) (1

where « is the trade-off hyper-parameter. We adopt RoS-
teALS [13] strategy to start training with a low value of o
to prioritize watermark recovery then linearly increase to
a threshold ayy,ax, Which can be set prior training to exert
TrustMark’s controlability (see Sec. 4.2).



Lrecovery (w,w) is the standard binary cross-entropy
loss to bring the recovered watermark close to the original.
The quality loss is defined as,

Lguatity (X, ¥) =FyuvLyuv + freipsLLpips 2
+ BrrLLrFL + BeanLaoan+agr  (3)

where Syuv, SLpips, OrrL and Sgan are the weights of
4 loss terms. Lyuv(X,y) is the mean squared error loss in
the YUV pixel space, Lrprps(X,y) is the perceptual loss
following [13, 66]. Additionally, TrustMark is also trained
in generative adversarial fashion with GAN loss,

Loantcr(x,y) = E [D(y)] - E

y~Pg X~Pyrcal
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where D is a discriminator to distinguish the encoded image
from the original, A is the gradient penalty loss weight for
training stablization [31].

Finally, we propose to add a focal frequency loss (FFL)
to bridge the gap between the cover and encoded image in
frequency domain,

LrrL(X,y) = PF(x),f(y) I[f(y) — f(X)Hz (6)

where f(.) is the 2D Fourier transform function and
Prx),f(y) € R?P6%256%3 s a dynamic weight matrix to bal-
ance the loss across frequency spectrum. It is reported in
[10, 28] that synthezied images often exhibit artifacts in the
frequency domain that can be easily spot by deep networks.
FFL was first introduced in [41, 45] to reduce such artifacts.
Here we leverage FFL to encourage higher watermark em-
bedding quality instead (see Sec. 4.5 and Sup.Mat).

3.2. Watermark removal

Since the watermark is embedded at the high-frequency
bands of the image, it can be removed by adding enough
noises [76] or via adversarial attacks or even embedding a
different watermark on top. However, such methods risk
reducing the image quality. Here, we aim to design a re-
liable watermark removal network to not only remove the
watermark but also enhance image quality (instead of wors-
ening it). Assume access to the watermarking model, we
treat watermark removal as a denoising task and integrate
both the TrustMark‘s embedder and extractor to help reg-
ulate the training (Fig. 1(b)). Our proposed network, Re-
Mark, has the backbone based on KBNet [75] — the current
state-of-art model for image restoration. For each training
cover image, we embed n random watermarks using E(.) to
synthesize the input sample for the denoise model. Differ-
ent from KBNet [75], ReMark is regulated to be close to
the cover image using a combination of 3 losses: (i) a pixel
loss Lyisg prioritizing Peak-Signal-To-Noise (PSNR) ratio
directly, (ii) a discriminator loss Lgan-gp similar to Trust-
Mark, and (iii) watermark similarity loss £x<p; to have the
output image the same response to X(.) as the cover (close
to random chance).

Cover Trustmark SSL RivaGAN  dwtDctSvd  RoSteALS  StegaStamp

.

a

= erE e e -
CLIC 44.0dB, 1.00 38.51

-

¥ ¥

MetFace 44.9dB, 1.00 41.8dB, 1.00 39.4dB, 0.95 39.8dB, 1.00 3! B, 1.00 40.5dB, 0.91

Figure 2. Representative watermarking examples for TrustMark
and 5 baseline methods (SSL [25], RivaGAN [73], dwtDctSvd
[51], RoSteALS [13], StegaStamp [66]) over 3 benchmarks (CLIC
[67], DIV2k [1]) and MetFace [42]), using the same random water-
mark. The residual is amplified 20 times for visualization purpose.

3.3. Resolution Scaling

Working on arbitrary resolution is a difficult challenge for
deep watermarking. Many existing methods only support
a fixed resolution [13, 40, 66, 77]. Those supporting arbi-
trary resolutions require a special design in the model archi-
tecture e.g. [73]. Here, we propose Resolution Scaling as
a post-hoc approach suitable for any watermarking model
(Algorithm 1). First, the cover image of resolution HxW
is downsampled to 256 x 256 upon which the watermark
is embedded. Next, we compute the residual between the
watermarked image and cover image at the embedding res-
olution. The residual is then rescaled back to Hx W before
being added to the original cover image (with control factor
A). Our method offers 4 advantages: (i) it executes at in-
ference time and treats the model as a blackbox, therefore
can be applied for any watermarking/removal algorithms;
(ii) by interpolating only the residual, the high resolution
output image can be derived directly from the original input
(Line#9 of Algorithm 1) therefore maximizes image qual-
ity; (iii) the imperceptibility and robustness trade-off can be
controlled at inference time via A (increasing A improves
watermark recovery but also makes the watermark artifacts
more visible); and (iv) our method is fast since image inter-
polation is the only overhead. While our Resolution Scaling
is extremely simple, its underlining motivation is not trivial
— the burden caused by arbitrary resolution is shifted from
the embedder (remaining intact) to the extractor (needs to be
robust to handle distorted residual after interpolation). For
ReMark, artifact removal at 256 x 256 resolution also re-
tains its effect after Resolution Scaling is applied (Sec. 4.4).

4. Experiments

4.1. Datasets, training details, and baselines

Datasets. We follow the same settings of [13] to train our
models on 101K images from the MIRFlickR 1M dataset



[39] (100K images for training and 1K for validation) and
evaluate on the CLIC [67] and MetFace [42] benchmarks.
Additionally, we evaluate on DIV2K [1] — a more diverse
and higher quality benchmark popular for super-resolution
testing. Since the DIV2K test set is not visible to public,
we use both the training and validation images for testing.
Unless otherwise specified, all experiments are evaluated
on DIV2K. At test time, every image is associated with a
random watermark and the encoded image is perturbed with
random noises described in Sec. 3.1.

Training details. We train TrustMark for 150 epochs with
AdamW optimizer at an initial learning rate of 4e — 6
per image in a batch of 32s and cosine annealing sched-
ule. Loss terms (Srprps, Syuv, BrFL, Bcan) are set to
(1,1.5,1.5,1) — we do not turn them extensively. It takes
48 hours to train on a Geforce RTX 3090 GPU and a stan-
dard Intel i7 processor. For ReMark, we set n=3 and the
training time is approx. 2 weeks for 100 epochs at batch
size of 8 on an A100 GPU. For inference, average water-
marking encoding/decoding takes 125/25 milliseconds on a
Nvidia RTX 3090 GPU.

Since the watermark signal is small as opposed to the
image content, it is important to prioritize the watermark
extractor X at the early training phase. We set the trade-
off parameter « low initially (o« = 0.05) and disable noise
simulation and GAN loss as well as fixing the input image
batch while varying random watermarks until X’s detec-
tion accuracy exceeds a certain threshold. We then unlock
subsequent TrustMark features (orders are: varying input
batchs, enabling noise simulation and activating GAN mod-
ule) before increasing « to the intended value a5 (more
details in Sup.Mat.).

Metrics. We use standard PSNR for evaluating the imper-
ceptibility of our watermarking/removal algorithms; and bit
accuracy for watermark recovery on watermarked images
after exposing to random noise (50% for random guess).
Unless otherwise stated, we apply Algorithm 1 with default
A = 1.0 for the proposed methods and all baselines and
compute these metrics at the original image resolution. We
do not report other imperceptibility metrics such as SSIM
or SFID [13] or bit accuracy on clean watermarked images
since they are highly saturated for all methods.

Baselines. We compare TrustMark with recent watermark
and steganography baselines including RoSteALS [13], Ri-
vaGAN [73], SSL [25], StegaStamp [66] and a traditional
representative dwtDctSvd [51] (also used in [13]). We also
report other baselines in Sup.Mat. For fair comparison, we
retrain the baselines using the same noise simulation set-
tings as TrustMark (Sec. 3.1) if it helps to improve perfor-
mance. We also report TrustMark performance on their re-
ported settings. At inference time, Resolution Scaling is ap-
plied to all methods except RivaGAN and the shallow meth-
ods that work at native resolution.

4.2. Watermark embedding

Tab. 1 shows performance of TrustMark (at ay,.x = 27.5)
and other baselines on the three benchmarks. Overall,
TrustMark outperforms all baselines at every metrics on all

benchmarks except PSNR on DIV2K (42.39dB) on par with
SSL [25] (42.73dB). On the other hand, SSL robustness
is in contrast with its imperceptibility performance, hav-
ing the lowest bit accuracy among the deep learning ap-
proaches. RoSteALS [13] is the runner up in robustness
but performs poorly in PSNR. RivaGAN [73] has the most
balanced PSNR and bit accuracy scores among the base-
lines, yet underperforms TrustMark by a large margin. The
shallow method dwtDctSvd [51] has near random bit ac-
curacy due to the amount of noises involved, despite scor-
ing reasonable PSNR. We note that it is not possible to
control the imperceptibility-robustness trade-off for such
hand-craft methods. Benchmark-wise, DIV2K proves to be
the most challenging dataset for watermarking, while the
narrow-domain MetFace yields the highest performance for
most methods. Fig. 2 shows watermarking results for sev-
eral cover images. TrustMark’s artifacts are more uniform
across color channels (RGB residual resembles a gray im-
age), more invariant to semantic objects (it is harder to rec-
ognize image objects from the residual) and is overall less
visible than other methods. We analyzed the mean loss of
high frequency detail within 20% of the Nyquist limit, for
DIV2K. TrustMark drops only 0.01% of the high frequen-
cies vs. 0.05%: RoSteals; 0.07%: Riva-GAN; 0.93%: dwt-
DctSvd, preserving fine high-res details.

We also train and evaluate TrustMark using the same
benchmark settings as the recent work of RoSteALS [13].
This benchmark is designed for robustness evaluation, us-
ing CLIC [67] dataset for cover images and destructive
ImageNet-C transformations [33] commonly employed for
classification evaluation as the noise sources. Resolution
Scaling (Algorithm 1) is turned off to be compatible with
the benchmark settings, meaning all performance metrics
are computed at the model-designed resolution. We set
Qmax = 15 for TrustMark to comfortably outperform RoS-
teALS on bit accuracy for this benchmark (Tab. 2), while
achieving much higher PSNR (+6dB). Although RivaGAN
and SSL have better imperceptibility scores, their robust-
ness performance is significantly inferior to our method.

We highlight some reported baseline numbers by some
recent localized region watermarking approaches; WAM
(32-bit payload) [61] and OmniGuard (100-bit payload)
[74]. These papers evaluate over distinct subsets of COCO
reporting PSNR of 38.3dB and 42.3dB respectively, versus
TrustMark PSNR of 40.3dB and 43.2dB on those subsets.

We study TrustMark’s controllability over the
imperceptibility-robustness trade-off in Fig. 3(a-b).
At training time, the trade-off is controlled via the loss
weight parameter amax (Eq. (1)). We note the optimal
range of aunax i (0,30) for stable training, as shown in
Fig. 3(a). As amax increases to 30, the PSNR improves
by more than 8dB while bit accuracy drops by less than
5%. At test time, the trade-off can be controlled via the
residual scale factor A in Algorithm 1. Fig. 3(b) depicts the
PSNR and bit accuracy trends over the optimal range of
A = [0.1,2.0], with bit accuracy increasing from random to
near saturation at the cost of reducing PSNR from 63dB to
37dB. This controllability provides flexibility for end-users



Method CLIC DIV2K MetFace
PSNR Acc. | PSNR Acc. | PSNR Acc.

TrustMark (amax = 27.5) | 43.26+1.59 0.954+0.09 | 42.39+1.46 0.95+0.09 | 45.34+1.33 0.96+0.10
RoSteALS [13] 30.03+2.63 0.94+0.09 | 27.95+2.51 0.934+0.09 | 33.77+2.37 0.93+0.10
RivaGAN [73] 41.04+0.31 0.7940.14 | 41.06+0.35 0.78+0.14 | 40.984+0.19 0.82+0.14
SSL [25] 42.744+0.12 0.60+£0.09 | 42.73+0.12 0.574+0.07 | 42.84+0.10 0.70+0.13
StegaStamp [66] 37.48+193 0.724+0.10 | 35.87£1.73 0.70£0.10 | 39.35+1.57 0.72+0.11
dwtDctSvd [51] 39.13+1.21  0.524+0.06 | 38.02+1.35 0.51+£0.06 | 41.14+£2.35 0.5240.08

Table 1. TrustMark versus baselines on three benchmarks. Performance metrics are PSNR for imperceptibility and bit accuracy for noised
watermarked images for robustness. Best and runner up methods are marked with bold and underline.
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bit length (c), noise severity (d) and adversarial attack (e) on performance. Re-watermarking with and without watermark removal (f).

Method \ PSNR Acc. (noised)
TrustMark (apax = 15) | 38.874+1.42 0.95+0.08

RoSteALS [13] 3268 £1.75 094 +0.07
StegaStamp [66] 3126 £0.85 0.88 +0.13
SSL [25] 41.84 £0.10 0.62+0.14
RivaGAN [73] 40.32 £0.15 0.77 £0.16
dwtDctSvd [51] 3896 £ 141 0.61 £0.20

Table 2. TrustMark versus baselines on CLIC dataset, using
ImageNet-C noise configuration in training and evaluation. Base-
line results are taken directly from [13].

to achieve desired watermark quality and robustness at
individual image level.

4.3. Watermark length and robustness

Fig. 3 (c) shows TrustMark performance for the bit length
range of [32, 200]. We fiX aypax = 20, A = 1.0 for this
experiment. Overall, it is more challenging to embed and

decode larger watermarks, as PSNR and bit accuracy both
drop by 7.5dB and 11% when bit length increases 6 folds
from 32 to 200, respectively.

We assess TrustMark robustness on several facets —
against various noise sources, severity levels and adversar-
ial attack. Fig. 4 shows bit accuracy of TrustMark and other
baselines against every individual noise sources in Sec. 3.1.
TrustMark outperforms the closest baseline RoSteALS on
all sources except Gaussian noise and box blur. Other meth-
ods are robust against certain noises but weak against others
e.g. dwtDctSvd performs well for Gaussian blur and Poster-
ize but close to random chance for Grayscale or RGB shift.

To evaluate noise severity, we train and test TrustMark
on 3 additional variants of noise settings: no noise simu-
lation, low-level noise and medium-level noise as demon-
strated in Fig. 3(d). Increasing noise severity affects PSNR
the most while bit accuracy stays roughly the same. Specif-
ically, PSNR sets at 53.2dB without noise simulation then
drops to 40.2dB for high severity noise, but bit accuracy
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Figure 4. Characterizing the robustness of TrustMark and baselines to individual noise perturbations.

Method PSNR1  Bit Acc. (~ 0.5)
No removal 40.20 0.970
ReMark 48.48 0.553
Pinto et al. [57] 40.75 0.550
Honig et al. [36] 39.93 0.830
I-FGSM [30] 23.48 0.629
Zhao et al. [76] (6 = 0.3) 9.23 0.660

Table 3. Watermark removal for TrustMark (amax = 20).

reduces by only 3%. We attribute this behavior to the end-
to-end training of TrustMark embedder and extractor, where
the gradient of the recovery 10ss Lyecovery(-) in Eq. (1) af-
fects both modules at the same time.

Using high severity noise simulation during training
also makes TrustMark more robust to adversarial attack, as
shown in Fig. 3(e). Here, we perform I-FGSM attack [30]
by adding subtle noise with maximum strength ¢ = 8/255
into the watermarked image to fool the watermark extrac-
tion model. The adversarial noise is initially set to O then is
adjusted at each attack iteration until the bit accuracy of the
target image is brought down below 0.5 + €/2, regardless
of PSNR. The number of [-FGSM iterations reflects the ro-
bustness of the watermark model against adversarial attack.
Per Fig. 3(e), when TrustMark is trained without noise sim-
ulation, it takes less than 50 iterations for a successful attack
on any watermarked image. In contrast, when trained with
high level noises, 32% of the watermarked images require
more than 3000 attack iterations.

4.4. Watermark removal and re-watermarking

Watermark removal We compare ReMark with adversar-
ial attack baselines, Pinto et al. [57], Honig et al. [36], I-
FGSM [30], and the denoising-based watermark removal
work by Zhao et al. [76]. The target watermarking model
for all removal methods is TrustMark with . = 20, A =
1.0. Tab. 3 shows that ReMark not only brings down bit ac-
curacy to 55% but also improves PSNR to 48.5dB. In con-
trast, Pinto et al. and I-FGSM only succeed in bit accuracy
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Figure 5. Left to right: Re-watermarking a cover image 1,5 and 10
times without (first row) and with (2nd and 3rd row) watermark
removal. Inset: 20X residual. Please zoom to inspect details.

because their sole aim is to ‘break’ the decoder module.
Honig et al. [36] only partially removes the signal. Simi-
larly weaker performance (and also low PSNR) of Zhao et
al. [76] demonstrate the resilience of TrustMark to arbitrary
image-denoising attacks and the need for ReMark for high
quality re-watermarking. ReMark is selective at targetted
removal of the TrustMark signal whilst retaining other de-
tail (i.e. high PSNR) including methods it is not trained on.
Re-watermarking Fig. 3(f) demonstrates ReMark efficacy
for re-watermarking. We make 2 observations: (i) bit ac-
curacy is not affected if a watermark remover is employed
or not (Fig. 3(f) right); and (ii) ReMark preserves image
quality better than not using it (Fig. 3(f) left). However,
the denoising effect of ReMark is weakened after each re-
watermarking, because the unwanted noise generated by
ReMark gets accumulated over time. A re-watermarking
example is illustrated in Fig. 5.

4.5. Ablation study

Tab. 4 shows the contribution of each design components.
Our training strategy ensures watermark recovery is always
prioritized in the first training phase, enabling bit accuracy
performance to be maintained through various ablations.
The architecture mutations influence PSNR mostly. When
GAN, E,os¢ and FFL loss are all disabled, TrustMark PSNR
is equivalent to StegaStamp [66] (exp (i)). Adding GAN,
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Table 4. Ablation studies on different mutations of TrustMark (amax = 20, A = 1.0) architecture. Ablated backbones are RegNet [59],

ResNext [71], ResNet18 [32], DenseNet121 [37].
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Figure 6. Limitations. TrustMark can watermark any image. Oc-
casionally very cluttered images reduce bit accuracy by a couple
of %, mitigated by raising the strength of the residual.

Epost and FFL separately improves the score by 0.7dB,
1.6dB and 1.7dB respectively (exp (ii-iv)). Epost combined
with either GAN or FFL boosts PSNR by 3dB (exp (v-vii))
and all three components make up 4dB in PSNR and 1.4%
in bit accuracy in total (exp (viii)).

We also experiment with different backbones for our
watermark decoder X. TrustMark training converges for
ResNet family, including ResNetl8 [32], DenseNetl21
[37], RegNet [59] and ResNext [71], but is not successful
for VGG [62], GoogleNet [23], ConvNext [46] and Effi-
cientNet [65]. We observe all successful backbones have
either a residual layer or a skip layer - both allow signals
from bottom layers to flow directly to the top via a sum
(residual) or concatenation (skip) operation. We attribute
this unique requirement of TrustMark to the complexity
of our multi-noise simulation scheme and the accuracy-
thresholded multi-stage training procedure.

Finally, we evaluated high and arbitrary resolution wa-
termarking by ablating the DIV2K dataset to 20% to 100%
of original (2K) resolution. We observe after encoding that
PSNR varies only by +0.02dB and after decoding that bit
accuracy varies only by =10~* on average across all resolu-
tions. TrustMark shows near-equivalent performance across
arbitrary resolutions due to our Resolution Scaling tech-
nique (Sec. 3.3). In Sup. Mat. we show that disabling scal-
ing maintains bit accuracy but significantly lowers PSNR.

Practical Uses and Limitations. We have found Trust-
Mark to perform consistently well down at image resolu-
tion of all sizes down to 80px shortest side, which presents
a practical lower limit. We examined the encoded images

with lowest PSNR scores and observe that all are highly
cluttered (Fig. 6). TrustMark already alleviates this thanks
to our FFL loss (>39dB PSNR at worst). The non-perfect
bit accuracy can be improved by: 1) an error correcting code
such as BCH [7] (not used in any results reported, but avail-
able in our open source code [11]); 2) raising the control
factor \ in Algorithm 1 to strengthen the watermark. As for
ReMark, we make a positive use case for re-watermarking
but acknowledge that it could be used to spoof identifiers
used to recover provenance metadata. Known mitigations
include incorporating a visual check between the water-
marked image and a fingerprint [19] or thumbnail within
recovered metadata, a workflow first proposed by Adobe
[17] who are one of several commercial adopters now us-
ing TrustMark for C2PA provenance lookup (see video sup-
mat.). As a robust, high visual quality solution to image wa-
termarking for provenance, TrustMark’s open source imple-
mentation [11] is becoming widely adopted since the pre-
print release of this paper on arXiv [12] (Nov, 2023) and is
included on the C2PA ‘soft binding algorithm list’ [16].

5. Conclusion

We propose TrustMark and ReMark for watermarking and
watermark removal. TrustMark integrates novel designs in
architecture and losses and rigorous noise simulation for ro-
bustness. With ReMark, we show that a customized de-
noising network is needed to restore a high quality image
from the TrustMark watermarked image. We propose an
effective resolution scaling algorithm to extend TrustMark
and ReMark for images with arbitrary resolution and en-
ables trade-off control at inference time. We show Trust-
Mark encoded images are imperceptible (PSNR> 40dB)
while being state-of-art robust to various noise sources and
can be restored with high fidelity (PSNR> 48dB). Appli-
cations of this work include content authenticity workflows
where identifiers may be imperceptibly embedded to track
the provenance of image assets in conjunction with open
standards such as C2PA [16]. Future work could include
other uses such as training data encoding to tackle GenAl
model attribution [2, 10] or extensions to video via fur-
ther noise augmentation similar to [27]. TrustMark has also
been shown to co-exist well with other watermarks [55], and
may aid watermark interoperability [18].
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